Then $\left(\frac{\partial f(\vec{k})}{\partial t}\right)$ collisions is evaluated by taking the difference between the number of collisions into a volume element at \vec{k} and the number out of it; by considering only transitions between states of equal energy, we obtain

$$\frac{\left(\frac{\partial f(\vec{k})}{\partial t}\right)_{coll.} = [1 - f(\vec{k})] \int f(\vec{k}') P_{k'k} dS' - f(\vec{k}) \int [1 - f(\vec{k}')] P_{kk'} dS' .$$
 (IV-17)

Here $P_{kk'}$ dS' is the probability per unit time of an electron making a transition from a state k to a state k', both of which lie on the same spherical surface of constant energy; dS' is an element of area about the state k'. The form of $P_{kk'}$ is given in Eq. (IV-23); $U_{kk'}$ and $U_{k'k}$, the transition probabilities between volume elements in k space, are equal by detailed balancing. Since we have assumed spherical energy surfaces, $|\nabla_k E|$ in Eq. (IV-23) is constant on a surface of constant energy and

$$P_{kk'} = P_{k'k} (IV-18)$$

Then

$$\left(\frac{\partial f(\vec{k})}{\partial t}\right)_{coll.} = \int [f(\vec{k}') - f(\vec{k})] P_{kk'} dS' \qquad (IV-19)$$

Fermi sphere

Substituting for $f(\vec{k})$, $f(\vec{k})$ from Eq. (IV-13) and dividing through by

$$\tau(\vec{k}) \left(\frac{\partial f(\vec{k})}{\partial t} \right)_{\text{fields}}$$
, and using the expression for $\left(\frac{\partial f(\vec{k})}{\partial t} \right)_{\text{fields}}$ from Eq. (IV-16) we obtain

$$\frac{1}{\tau(\vec{k})} = \int \left[1 - \frac{\tau(\vec{k}') k'_z}{\tau(\vec{k}) k_z}\right] P_{kk'} dS' . \qquad (IV-20)$$
Fermi sphere

Equation (IV-20) for $\tau(\vec{k})$ is an integral equation. In order to estimate the anisotropy of $\tau(\vec{k})$ we shall set $\tau(\vec{k'})/\tau(\vec{k})=1$ inside the integral. This may be regarded as the first step of an iteration procedure for finding τ . Since we chose our electric field (z axis) along the direction \vec{k} for which we are computing $\tau(\vec{k})$ we have

$$k_z = k_s$$
 and $k'_z = k_s \cos \theta$ (IV-21)

where θ is the angle between k and k'. Let ϕ be the angle between the plane of k and k' and the z-x plane. Then

$$\frac{1}{\tau(\vec{k})} = k_s^2 \int_0^{\pi} d\phi \int_0^{2\pi} [1 - \cos\theta] |\sin\theta| P_{\vec{k}, \phi}(\theta) d\theta. \qquad (IV-22)$$

We have chosen these limits on θ and ϕ because of the possibility that $P_{\vec{k},\phi}(\theta) \neq P_{\vec{k},\phi}(-\theta)$; this possibility arises because for an arbitrary direction of \vec{k} the section of the Brillouin zone for phonons centered on the tip of the k vector is not symmetrical about the line $\theta = 0$. A phonon may be available for a normal process with angle θ but not for one with the angle θ . We would like to evaluate the inner integral numerically and prefer to include the effect of asymmetries in it.

We now consider the form of $P_{k,\phi}$ (0). Perturbation theory gives

$$P_{k,\phi}(0) = \frac{1}{4\pi^2 \pi} \frac{\left| U_{kk'} \right|^2}{\left| V_k E \right|_{k'}}$$
 (IV-23)

where $U_{kk'}$ is the matrix element of the perturbing potential U taken between the initial electron state ψ_k and the final state $\psi_{k'}$ [10]; unit crystal volume is assumed. We shall be interested only in the perturbation due to lattice vibrations, since at room temperature these dominate the scattering of electrons. We then write

$$U(\vec{r}) = \sum_{\vec{l}} V[\vec{r} - \vec{l} - \vec{R}(\vec{l})] - V(\vec{r} - \vec{l})$$

$$= -\sum_{\vec{l}} \vec{R}(\vec{l}) \cdot \nabla V(\vec{r} - \vec{l});$$
(IV-24)

where $V(\vec{r} - \vec{l})$ is the potential at \vec{r} associated with the ion at lattice point \vec{l} and $\vec{R}(\vec{l})$ is the displacement at \vec{l} . $V(\vec{r} - \vec{l})$ includes both the potential due to the ion core and to the electrons that shield the core. The wave functions are